$\begin{array}{lllllllllllllllllllllll}\mathbf{O} & \mathrm{K} & \mathrm{L} & \mathbf{A} & \mathbf{H} & \mathbf{O} & \mathrm{M} & \mathbf{A} & \mathbf{S} & \mathbf{T} & \mathbf{A} & \mathbf{T} & \mathbf{E} & \mathbf{U} & \mathbf{N} & \mathbf{I} & \mathbf{V} & \mathbf{E} & \mathbf{R} & \mathbf{S} & \mathbf{I} & \mathbf{T} & \mathbf{Y}\end{array}$ SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems
Spring 2001
Midterm Exam \#1

Name : \qquad

Student ID: \qquad

E-Mail Address:

Problem 1:

Suppose we have a state-space realization given by A, b, c with the three chosen state variables $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$. Suppose we are now interested in the state variables $z=\left[\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right]^{T}$, where $z_{1}=k_{1} x_{1}, z_{2}=k_{2} x_{2}$, and $z_{3}=k_{3} x_{3}$, and we let $\dot{z}=F z+g u, y=h z$.
a) Write out the matrices F, g, h in terms of the elements of A, b, c and the scale factors k_{1}, k_{2}, k_{3}.
b) Suppose we wish to change the time scale and substitute $\tau=a_{0} t$ into the equations. Repeat part a), showing how F, g, h depend on the time scale factor a_{0} and the elements of A, b, c.

Problem 2:

If $\{A, b, c, d\}, d \neq 0$, is a realization with $H(s)=c(s I-A)^{-1} b+d$, show that $\{A-(b c / d), b / d,-c / d, 1 / d\}$ is a realization for a system with transfer function $1 / H(s)$.

Problem 3:

Realize the following SIMO continuous-time, time-varying system and show one feasible state space representation, i.e., $\{A(t), B(t), C(t), D(t)\}$,

$$
\begin{gathered}
e^{-t} \dot{y}_{1}(t)+y_{1}(t)+\ddot{y}_{2}(t)+y_{2}(t)=t u(t) \\
\dot{y}_{1}(t)+\dot{y}_{2}(t)+t y_{2}(t)=\dot{u}(t)+t^{2} u(t)
\end{gathered}
$$

Problem 4:

A nonlinear system is given by

$$
\dot{x}=\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
f_{1}\left(x_{1}, x_{2}, u\right) \\
f_{2}\left(x_{1}, x_{2}, u\right)
\end{array}\right]=\left[\begin{array}{c}
1+2 e^{2 x_{1}}-3\left(x_{2}-1\right)^{2}+\sin 5 u \\
\frac{1}{3} x_{1} x_{2}^{3}-x_{1} x_{2}+2 \ln \left(1+x_{1}\right)
\end{array}\right] .
$$

Linearize the system about the equilibrium point. To improve the accuracy, approximate up to the second order in the linearization process.

Problem 5:

Let

$$
H(s)=\left[\begin{array}{cc}
\frac{s^{2}+1}{s^{3}} & \frac{2 s+1}{s^{2}} \\
\frac{s+3}{s^{2}} & \frac{2}{s}
\end{array}\right]
$$

be a transfer function matrix. Find a minimal realization (i.e., simulation diagram and state space representation) for the continuous-time system defined above as, $H(s)$.

